12,722 research outputs found

    Theoretical Study of Natural Convection Flows in Closed-End Cylindrical Vessels Final Report

    Get PDF
    Analytical solutions of natural convection flows in closed-end cylindrical vessels to obtain exact temperature and velocity distributions in laminar flow region under steady state conditio

    Subsonic flow and supersonic cross-flow near the center portion of a wing Final technical report

    Get PDF
    Analysis of supersonic conical flow and solutions for subsonic region on compression side of delta win

    Self-Tuning Adaptive-Controller Using Online Frequency Identification

    Get PDF
    A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods

    An Outer Gap Model of High-Energy Emission from Rotation-Powered Pulsars

    Full text link
    We describe a refined calculation of high energy emission from rotation-powered pulsars based on the Outer Gap model of Cheng, Ho \&~Ruderman (1986a,b). We have improved upon previous efforts to model the spectra from these pulsars (e. g. Cheng, et al. 1986b; Ho 1989) by following the variation in particle production and radiation properties with position in the outer gap. Curvature, synchrotron and inverse-Compton scattering fluxes vary significantly over the gap and their interactions {\it via} photon-photon pair production build up the radiating charge populations at varying rates. We have also incorporated an approximate treatment of the transport of particle and photon fluxes between gap emission zones. These effects, along with improved computations of the particle and photon distributions, provide very important modifications of the model gamma-ray flux. In particular, we attempt to make specific predictions of pulse profile shapes and spectral variations as a function of pulse phase and suggest further extensions to the model which may provide accurate computations of the observed high energy emissions.Comment: 13 pages, LaTeX, for figures send request to [email protected]

    Origins of Inert Higgs Doublets

    Get PDF
    We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2Z_2 symmetry can occur automatically. Several examples are discussed.Comment: 14 pages, 1 table, no figure. References adde

    Conflation of short identity-by-descent segments bias their inferred length distribution

    Full text link
    Identity-by-descent (IBD) is a fundamental concept in genetics with many applications. In a common definition, two haplotypes are said to contain an IBD segment if they share a segment that is inherited from a recent shared common ancestor without intervening recombination. Long IBD segments (> 1cM) can be efficiently detected by a number of algorithms using high-density SNP array data from a population sample. However, these approaches detect IBD based on contiguous segments of identity-by-state, and such segments may exist due to the conflation of smaller, nearby IBD segments. We quantified this effect using coalescent simulations, finding that nearly 40% of inferred segments 1-2cM long are results of conflations of two or more shorter segments, under demographic scenarios typical for modern humans. This biases the inferred IBD segment length distribution, and so can affect downstream inferences. We observed this conflation effect universally across different IBD detection programs and human demographic histories, and found inference of segments longer than 2cM to be much more reliable (less than 5% conflation rate). As an example of how this can negatively affect downstream analyses, we present and analyze a novel estimator of the de novo mutation rate using IBD segments, and demonstrate that the biased length distribution of the IBD segments due to conflation can lead to inflated estimates if the conflation is not modeled. Understanding the conflation effect in detail will make its correction in future methods more tractable
    corecore